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Table S1: Data sets for development and evaluation. 
 

 

Localization Eukaryota Bacteria Archaea 

    

Chloroplast 133 - -  

Chloroplast membrane 11 - -  

Cytosol 220 179 41 

Endoplasmic reticulum  10 - - 

Endoplasmic reticulum membrane 65 - - 

Extra-cellular space 596 82 5 

Fimbrium - 16 - 

Golgi apparatus 3 - - 

Golgi apparatus membrane 17 - - 

Mitochondria 140 - - 

Mitochondria membrane 87 - - 

Nucleus 320 - - 

Nucleus membrane 5 - - 

Outer membrane - 6 - 

Plasma membrane 40 144 13 

Periplasm - 52 - 

Peroxisome 6 - - 

Peroxisome membrane 2 - - 

Plastid 14 - - 

Vacuole 3 - - 

Vacuole membrane 10 - - 

SUM 1682 479 59 

 

Data: number of proteins per localization class with experimentally determined 
annotations of a single subcellular localization taken from SWISS-PROT release 
2011_04 (1) in at HVAL≤0 (2, 3) sequence-unique sets of eukaryotic, bacterial and 
archaeal proteins. The data sets were used for development of LocTree3 and its 
predecessor LocTree2 (4). 
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Table S2: Homology-based inference from sequence-unique sets  

PSI-BLAST E-value 
threshold

*1
 

Q18 - Eukaryota 

(1682 proteins) 

Q6 - Bacteria 

(479 proteins) 

10
-7

 1±1 0 

10
-5

 2±1 0.4±1 

10
-3

 5±1 2±2 

10
-1

 17±2 9±3 

1 27±3 25±5 

10 32±3 39±6 

100 24±2 33±5 

100000 22±2 28±5 

Random
*2

 22±2 28±5 

 

Data: 1682 eukaryotic and 479 bacterial sequence-unique proteins with an 
experimental annotation of a single sub-cellular localization extracted from SWISS-
PROT release 2011_04, aligned against themselves.  

 
1*

 PSI-BLAST E-value threshold: defines the E-value (5, 6) threshold for a PSI-
BLAST (7) hit, which is different to the query protein, to be considered for 
performance evaluation 

*2 
Random: defines the performance of a random prediction in one of eighteen 
classes in Eukaryota and six classes in Bacteria, with respect to the data 
distribution among these classes 

Note: Q is the overall prediction accuracy (Eqn. 3, Methods); “±” values refer to standard 
errors    (Eqn. 4, Methods) 
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Table S3: Data sets for independent/additional testing.  

Localization 
New2013_hval0

*1
 New2014

*2
  Human

*3
 

Eukaryota Bacteria Eukaryota Eukaryota 

 

Chloroplast 
10 - 8 - 

Chloroplast membrane 14 - - - 

Cytosol 43 19 25 965 

Endoplasmic reticulum (ER) 1 - 1 41 

ER membrane 7 - - 175 

Extra-cellular space 112 20 121 744 

Fimbrium - 1 - - 

Golgi apparatus 2 - 2 15 

Golgi apparatus membrane 4 - - 83 

Mitochondrion 13 - 1 290 

Mitochondrion membrane 7 - - 112 

Nucleus 43 - 34 1524 

Nucleus membrane - - - 7 

Outer membrane - 4 - - 

Periplasm - 5 - - 

Plasma membrane 9 8 6 1020 

Peroxisome 1 - - 25 

Peroxisome membrane 1 - - 13 

Plastid - - - - 

Vacuole 1 - - - 

Vacuole membrane 5 - - 2 

SUM 273 57 198 5016 

 

Data: number of sequences per localization class in the sets of SWISS-PROT 
proteins used for the independent/additional testing of LocTree3.  
*1

 “New2013_hval0” set: at HVAL≤0 redundancy reduced sets of 273 eukaryotic 
and 57 bacterial proteins, thus containing no protein pair with >20% pairwise 
sequence identity over 250 residues aligned. Redundancy reduced set of 
archaeal proteins was too small (18 proteins) to provide meaningful 
performance estimates and was thus excluded from the analysis.  

*2
 “New2014” set: all eukaryotic proteins added to SWISS-PROT between 

releases 2013_11 and 2014_03, not redundancy reduced. Because the 
number of corresponding bacterial proteins was too small (10 proteins), they 
were excluded from the analysis. 

*3
 “Human” set: all proteins with an experimental annotation of exactly one 

localization class in the SWISS-PROT release 2014_03, not redundancy 
reduced. 
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Section S1: LocTree3 assessment on multi-localized proteins 

LocTree2 and LocTree3 were developed on proteins from the Swiss-Prot release 
2011_04. The number of multi-localized proteins in this release was 48 for bacteria 
(all annotated with two localization classes) and 4556 for eukaryota (4376 with two 
localization classes, the others with ≥3). Due to the small number, we dropped 
bacteria. Reducing redundancy at HVAL≤0 on these 4556 left us with 72 sequence-
unique proteins. We applied LocTree3 to these and considered the prediction 
correct if one of the experimentally observed classes had been predicted. Result: 
Q18=65±12%; while similar to the performance of LocTree2 on the 1682 cross-
validate proteins, it compared less favourable to 80±3% for LocTree3. Why did 
performance drop on those proteins? Clearly, the random expectation was the 
opposite, i.e. since we allow one mistake we have a higher random performance: 
picking one right from 18 is tougher than picking 2 and choosing the best-of-two. In 
short, our suspicion is that today’s double annotations as a whole set are not good 
enough.  

We looked at LocTree3 predictions for five misclassified proteins (i.e. proteins for 
which none of the experimentally annotated localization classes could be picked by 
LocTree3) with the highest reliability scores (RIs). One of the five proteins 
(YG4O_YEAST, RI=38) was an uncharacterized protein while for the remaining four 
we were able to find the experimental evidence for the predicted localization classes 
in other sources rather than Swiss-Prot: (1) ZYM1_SCHPO is a metallothionein, 
which is annotated to be localized to the nucleus and the cytoplasm in SWISS-
PROT. LocTree3 predicts this protein to be secreted with the RI=98, we found an 
experimental evidence for metallothioneins to be secreted in Moltedo et al. (8); (2) 
GPX41_MOUSE is annotated to localize to the mitochondrion and the cytoplasm, 
while LocTree3 predicts nucleus with the RI=93, which is confirmed by Yant et al. 
(9); (3) NPC2_ASPOR is annotated to be cytoplasmic and a Golgi apparatus protein, 
LocTree3 however predicts it to be vacuolar with the RI=43, which is true for the 
protein’s ortholog NPC2_YEAST; (4) PEN2_CAEEL is annotated to be localized to 
the ER membrane and Golgi membrane, LocTree3 predicts mitochondria membrane 
with RI=36 which is true according to the work of Hansson et al. (10). Interestingly, 
for the protein with the lowest prediction reliability index (CSN4_BRAOL, RI=6) and 
the predicted localization class chloroplast we could find an evidence in Xiangjun et 
al. (11) stating that the protein acts as a suppressor of chloroplast development. 
SWISS-PROT annotates the protein to be nuclear and cytoplasmic. 

From these findings we conclude that the number of sequence-unique multi-
localized proteins as we have them today in SWISS-PROT is rather small and the 
annotations of multiple localization may be fuzzy and incomplete. Therefore, 
assessing prediction methods on these proteins may lead to underestimated results 
and incorrect implications. 
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Figure S1: 

 
 
 
Fig. S1: PSI-BLAST sequence identities to LocTree3 reliability scores. Localization 
annotation from sequence homologs is more accurate at higher PSI-BLAST pairwise 
sequence identity (PIDE) values. Here we show the percentage Accuracy/Coverage 
(Methods) at the given sequence identity thresholds for 995 eukaryotic and 202 bacterial 
proteins that had a PSI-BLAST hit with E-value≤10-3 (6, 7). Since method’s performance did 
not change for PIDE<20, we formed LocTree3’s reliability index by normalizing the 
sequence identity values according to (PIDE-20)*10/8. 
Note, the slight decrease of the Accuracy curves at PIDE approaching 100% results from 
the changed annotations in SWISS-PROT between releases 2011_04 and 2013_11. 
Though these proteins are predicted to be localized correctly in 2013_11, they are 
considered as false predictions in the current evaluation (Eukaryota: AIM37_YEAST, 
ECP_MACFA; Bacteria: ESPR_MYCTU). 
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Figure S2: 

 
 
Fig. S2: E-value thresholds for the homology-based inference from all experimentally 
annotated proteins in SWISS-PROT release 2011_04 
The accuracy of localization annotation transfer from sequence homologs (entire SWISS-
PROT release 2011_04: 34583 eukaryotic and 4765 bacterial proteins) varies at different 
PSI-BLAST E-values. Shown is the overall accuracy of LocTree3 (dark grey) and PSI-
BLAST (light grey) in predicting 18 localization classes (Q18, Methods) for eukaryotes 
(Panel A) and 6 classes for bacteria (Panel B) at the given E-value cut-off. PSI-BLAST E-
value thresholds reached their peak at high E-value≤10. However, in order to determine the 
threshold at which value to use LocTree2 and at which PSI-BLAST, we also need to 
consider the performance of the final merger LocTree3 at the same threshold. The optimal 
threshold for LocTree3 seemed to be much more conservative, namely at E-value≤10-3. 
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Table S4: Strategies for annotation transfer by homology.  

 

               Method 
     
   Performance 

Minimum 
E-val 

Maximum 
HVAL  

Maximum 
PIDE 

Majority 
vote 

E
u
k
a
- 

ry
o
ta

 

Q(18), 1682 
proteins 

54 ± 3 53 ± 3 55 ± 3 53 ± 3 

B
a
c
-

te
ri
a
 

Q(6), 479 
proteins 

40 ± 6 38 ± 5 40 ± 5 39 ± 5 

 

Data: sequence-unique sets of 1682 eukaryotic and 479 bacterial proteins extracted 
from SWISS-PROT release 2011_04. For each protein a PSI-BLAST profile was 
built using a combination of UniProt (1) and PDB (12) databases redundancy 
reduced at 80% sequence identity. The profiles were then aligned at the standard E-
value of 10

-3 
(6, 7) against 34583 experimentally annotated eukaryotic and 4765 

bacterial proteins available in SWISS-PROT in 2011_04. Given a list of homologs 
for a query protein we investigated which of the following strategies contributed most 
to the overall performances Q18 (i.e. correct classification of a protein in one of 18 
classes) for Eukaryota and Q6 (i.e. correct classification of a protein in one of 6 
classes; Methods) for Bacteria: 

Minimum E-val: take the annotation of the hit with the minimum expectation value 

Maximum HSSP-val: take the annotation of the hit with the maximum HVAL (9, 10) 

Maximum PIDE: take the annotation of the hit with the maximum pairwise sequence 
identity 

Majority vote: take the localization class of most hits 

When more than one hit fit the same (e.g. maximum PIDE), we picked the first. 
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Figure S3: 

 

 

Fig. S3: Class-wise performance comparison of LocTree3 to its sources  

PSI-BLAST marks a simple ‘lookup’ in the database of experimentally annotated proteins 
from the SWISS-PROT release 2011_04 (i.e. 34583 eukaryotic and 4765 bacterial 
proteins), self-hits are excluded; LocTree2 is a de novo machine learning-based predictor, 
results shown here are valid for cross-validation on 1682 eukaryotic and 479 bacterial 
proteins. LocTree3 combines the results of previous two methods by taking PSI-BLAST hits 
with E-value≤10-3 and maximum PIDE, if available, and LocTree2 predictions otherwise. We 
tested on a non-redundant data set of (A) 1682 eukaryotic and (B) 479 bacterial proteins 
extracted from SWISS-PROT release 2011_04. The localization classes (compartments) on 
the x-axes mark the averages over all proteins in that class.  Note that the x-axes are 
sorted by the prevalence of that class in the experimental annotations (as given by the inlet 
pie-charts). In this graph, we force PSI-BLAST to always return a prediction. The y-axes 
show the geometric average (gAv, Methods) between accuracy and coverage. The pie 
charts in the centre show the fraction of proteins belonging to each class. LocTree2 
predicted classes with most experimental annotations best (A: EXT+NUC, B: 
CYT+IM+EXT). We could not confirm the same trend for the simple PSI-BLAST protocol.  
Overall, our new method, LocTree3, published in the web server still maintains a small 
correlation between performance and experimental annotations with respect to the 
compartments.  

Abbreviations: gAv, geometric average; CHL, chloroplast; CYT, cytosol; ERM, 
endoplasmic reticulum membrane; EXT, extra-cellular; FIM, fimbrium; GOLM, Golgi 
apparatus membrane; MIT, mitochondria; MITM, mitochondria membrane; NUC, nucleus; 
PERI, periplasmic space; PM, plasma membrane. 
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Table S5: LocTree3 assessment on sequence-unique sets of 479 bacterial and 1682 

eukaryotic proteins 

 

Localization Nprot Acc Cov gAv 

Extra-cellular  596 88 ± 3 96 ± 2 92 ± 4 

Nucleus  320 81 ± 5 86 ± 5  83 ± 6 

Cytosol 220 68 ± 7 64 ± 8 66 ± 7 

Mitochondria 140 74 ± 10 66 ± 10 70 ± 8 

Chloroplast 133 72 ± 9 73 ± 10 72 ± 9 

Mitochondria membrane 87 77 ± 11 69 ± 11 73 ± 11 

ER membrane 65 67 ± 16 57 ± 14 62 ± 13 

Plasma membrane 40 84 ± 15 78 ± 16 81 ± 16 

Golgi membrane 17 69 ± 31 53 ± 29 61 ± 27 

Plastid 14 50 ± 50 29 ± 31 38 ± 23 

Chloroplast membrane 11 80 ± 29* 73 ± 29* 76 ± 32* 

ER 10 71 ± 47* 50 ± 35 60 ± 33 

Vacuole membrane 10 100* 40 ± 31 63 ± 32 

Q(18) – Eukaryota 1682 80 ± 3   

Cytosol 179 91 ± 5 90 ± 5 91 ± 7 

Plasma membrane 144 96 ± 4 95 ± 4 96 ± 5 

Extra-cellular 82 75 ± 11 87 ± 9 80 ± 11 

Periplasm 52 82 ± 14 77 ± 14 79 ± 15 

Fimbrium  16 83 ± 25* 63 ± 35 72 ± 26 

Q(6) – Bacteria 479 89 ± 4   

 
Data sets and the LocTree3 performance estimation as in Figure S3. Abbreviations 
used: Nprot, the number of proteins with known localization; Acc, accuracy; Cov, 
coverage; gAv, geometric coverage of Acc and Cov; Q(n), overall prediction  
accuracy. Standard errors were estimated by bootstrapping (Methods).  
Note 1: Q(n) is a six-state value for bacteria, i.e. the overall accuracy for 
classification in one of six localization classes, and an eighteen-state value for 
Eukaryota (Methods). Note 2: Only performances for localization classes containing 
more than ten proteins are reported. 
* = unrealistic upper or lower bound given by the standard error due to the small 
data set size. 
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Table S6: Performance comparison on LocTree3’s development data 

Method 

 Eukaryota  Bacteria 

 “Complete” 
set 

 (1682)
*7

 

¬PSI-BLAST 
hits  

(687)
 *7

 

PSI-BLAST 
hits  

(995)
 *7

 

 “Complete”    
set 

 (479)
 *8

 

¬PSI-BLAST 
hits  

(277)
 *8

 

PSI-BLAST 
hits  

(202)
 *8

 

Cello 2.5
*1

 

Q
1

0
 

65±3 60±5 70±4 

Q
5

 

82±4 81±5 83±6 

PSORTb 3.0
*2

  - - - 57±5 47±7 71±7 

Wolf Psort
*3

 60±3 57±5 63±3 - - - 

YLoc
*4

 60±3 55±5 64±4 - - - 

LocTree2
*5

 65±3 62±4 68±4 86±4 86±5 85±6 

LocTree3*
6
 81±3 62±4 94±2 90±3 86±5 94±4 

 
*1 Cello 2.5: employs a system of Support Vector machines to classify eukaryotic proteins 

in 12 and bacterial in 5 classes using sequence-derived features (13) 
*2 PSORTb 3.0: predicts four classes for Gram-positive and five classes for Gram-negative 

bacteria through a combination of several classifiers into a Bayesian network (14) 
*3 Wolf Psort: k-nearest neighbour classifier that predicts 12 localization classes for 

eukaryotes from sequence-derived features (15) 
*4 YLoc: uses sequence-derived features together with GO terms to classify eukaryotic 

proteins in 11 localization classes through Naïve Bayes (16) 
*5 LocTree2: de novo machine learning-based method, results valid for cross-validation 
*6 LocTree3: combines de-novo (LocTree2) and homology-based (PSI-BLAST) searches; it 

uses PSI-BLAST predictions (lookup at E-value≤10-3 in a database of experimentally 
annotated proteins) if available and LocTree2 (results from the cross-validation setting), 
otherwise 

*7 data set Eukaryota: 1682 sequence-unique eukaryotic proteins in SWISS-PROT release 
2011_04; for 995 of those we found PSI-BLAST hits, for 687 we did not  

*8 data set Bacteria: 479 sequence-unique bacterial proteins in SWISS-PROT release 
2011_04; for 202 of those we found PSI-BLAST hits, for 227 we did not  

Note: Q is the overall prediction accuracy (Eqn. 3, Methods); “±” values refer to standard 
errors (Eqn. 4, Methods); bold face: “winner in each column” 
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Table S7: Performance comparison on human protein data 

Method 
Q10 (Eqn. 3, Methods) 

“Human proteins” set (5016)
*6

 

Cello 2.5
*1

 75±1 

Wolf Psort
*2

 71±1 

YLoc
*3

 76±1 

LocTree2
*4

 76±1 

LocTree3
*5

 89±1 

 
*1-5  Methods as in Table S6 
*5  data set “Human proteins”: 5016 human proteins with an experimental annotation of 

exactly one localization class in SWISS-PROT release 2014_03.  A vast majority of 
these proteins constitutes the training sets of the methods tested. 

Note: “±” values refer to standard errors (Eqn. 4, Methods); bold face: “winner in each 
column” 
 
 

 

Table S8: Proteome-wide localization predictions using PSI-BLAST 

Organism name 
#proteins 

predicted*1 

#PSI-BLAST 
predictions*2 

(% in relation to 
#proteins predicted) 

#Self-hits*3 

(% in relation to #PSI-
BLAST predictions) 

H. sapiens 20249 15671 (77%) 4638 (30%) 

S. cerevisiae 6434 4372 (68%) 2209 (51%) 

A. thaliana 27270 16527 (61%) 1843 (11%) 

C. elegans 20791 9780 (47%) 346 (4%) 

B. weihenstephanensis 5650 1862 (33%) 1 (<1%) 

A. pernix 1700 133 (8%) 2 (1%) 

 
*1 number proteins predicted with LocTree3 in the proteomes of six completely 

sequenced organisms downloaded from http://www.ebi.ac.uk/genomes/ 

*2 number of proteins predicted by PSI-BLAST. The numbers in parenthesis are 
fractions in relation to the total number proteins predicted in an organism 

*3 number of PSI-BLAST self-hits, i.e. hits that were identical to query proteins. The 
numbers in parenthesis are fractions in relation to the total number proteins 
predicted by PSI-BLAST 

http://www.ebi.ac.uk/genomes/
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Section S2: LocTree3 is much more reliable than blind homology-inference. 
Two recent advances in molecular biology make it impossible to blindly trust 
annotations. The first are high-throughput experiments that typically change the 
value of an annotation from, e.g. “protein Q is native in the Golgi” to “protein Q has 
been detected to have entered the secretory pathway with a probability of 0.7”. 
Clearly, using the second statement to annotate Q as extra-cellular would be very 
wrong.  But what if we added “secretory pathway” as a new “class”, should we then 
annotate it as in that class, or should we maintain the probability? If we maintained 
the probability: should this be counted as “localization annotated”? What about a 
protein Q2 that is sequence similar to Q: should we annotate its localization also to 
be “secretory pathway with 70% chance”? One simple experimental data point 
generates so many questions that cannot be answered without generating new 
problems! Thousands of such data points are being created by modern molecular 
biology every month.   

 The second problem is contained in the first, but much more prevalent in 
today’s databases that are still heavily based upon detailed biochemical 
experiments.  Assume that we have a reliable annotation for Q as Golgi: how to treat 
proteins that are related to Q? For instance, those related in terms of sequence 
similarity.  This brings up the argument of Imai & Nakai (17), namely that PSI-BLAST 
predicts localization more accurately than de novo methods. Here we showed that 
this is true to some extent (Table 1: for some proteins PSI-BLAST is better than 
LocTree2), but that if predictions are forced, the opposite becomes true (Table 1: 
averaged over all proteins PSI-BLAST is much less accurate than LocTree2). 
Clearly, the tool we make available now, LocTree3, settles the discussion. Even if 
we were right that LocTree3 is the best method currently available to predict protein 
localization, should we apply it to annotate localization in databases that are 
exclusively based on experiments such as SWISS-PROT (1)?  We suggest a 
negative answer: leave experimental annotations as clean as possible. Should we 
then remove almost 90% of (stand Feb. 2014) all annotations about localization in 
SWISS-PROT (i.e. those based on non-experimental findings)? What about a 
database that pulls in automated annotations such as UniProt and/or GO (18)? 
Naïve users querying UniProt might get the impression that over 5m (million) 
proteins have annotations for localization when the best we can do to develop 
prediction methods is dig out a list of may be 25k (thousand), i.e. 200 times fewer 
than suggested by that naïve sieve through UniProt. Clearly, we argue that it would 
be better to remove the 5m-25k inferred annotations and replace those by LocTree3 
predictions marked as predictions and by possibly augmenting this with predictions 
for all other 45m proteins in today’s UniProt (total 52m in Feb. 2014).   
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Section S3: Possible sources for PSI-BLAST mis-predictions 

The idea behind LocTree3 is to use PSI-BLAST if it finds hits and LocTree2, 
otherwise. Thus if a prediction of the sub-cellular localization is incorrect and is 
derived from PSI-BLAST, it cannot be ‘corrected’ by LocTree2 anymore. 

Nevertheless, we looked into the cases for which PSI-BLAST annotated 
proteins incorrectly. In our development eukaryotic data of 1682 eukaryotic proteins, 
995 proteins were classified by PSI-BLAST and for remaining 687 proteins it failed to 
identify a homolog in the data set of all experimentally annotates proteins. Of 995 
predicted proteins 69 were misclassified. The most commonly mis-classified pairs of 
classes (one observed, the other looked up from homolog) were: mitochondria and 
chloroplast (9 times), plastid and chloroplast (8 times), cytoplasm and nucleus (8 
times), cytoplasm and secreted (6 times), cytoplasm and mitochondria (5 times).  

These pairs either resembled compartments that are either close in space 
(e.g. cytoplasm and nucleus), closely related (chloroplasts present one of the three 
types of plastid) or are very similar in their structure (chloroplast and mitochondria). 
Therefore, the PSI-BLAST mis-classifications may originate from incorrect 
experimental annotations, as well as from similarity in translocation signals. About 
33% of the mistakes originated from “honest orthologs” (e.g. RK32_EUGGR 
annotated chloroplast but predicted plastid as its ortholog RK32_ASTLO). The mis-
classification with the highest score (PIDE=88%) was made for ECP_MACFA, a 
protein for which the SWISS-PROT has changed since LocTree3 development from 
cytosol to be secreted, the latter correctly identified by PSI-BLAST. In other word, 
this mistake was based on an incorrect earlier annotation.  
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